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LElTER TO THE EDITOR 

Period-doubling route to chaos for a global variable of a 
probabilistic automata network 

N Boccarat: and M Rogert 
t DRECAMISPEC, CE-Saclay, 91191 Gif-sur-Yvette Cederr, France 
t Depanment of Physics, University of Illinois, Chicago, IL 60680, USA 

Received 30 March 1992 

AbslmcL An a function of a parameter characterizing the degree of mixing of site 
values, the density of non-zem sites of some onedimensional eellular automata is shown 
to exhibit a scquence of perioddoubling bifurcations and to behave chaotically when the 
degree of mixing is sufficiently large. The automata network rules which are considered 
appear lo be useful lo model complex systems, as in epidemiology, in which the motion 
of the individuals is believed to play an imponant mle. 

In a recent paper Bocrara and Cheong (1992) have presented and studied automata 
network epidemic models. In these models, the rule for the spread of the infectious 
disease consists of two subrules. The first one, applied synchronously, models infection 
and removal (or recovery), and the second, applied sequentially, describes the motion 
of the individuals. The spatial correlations created by the application of the first 
S U b N k  are partially destroyed according to the degree of mixing of the population 
which follows from the application of the second SUbNk.. 

Since automata networks of this type could be used to model other complex sys- 
tems in which motion is believed to play an important role as, for instance, interacting 
populations in ecology, we have studied some general properties of automata networks 
whose rules consist of two SubNkS defined as follows. The first one is a standard 
m-state (0,l)  cellular-automaton rule, which may be deterministic or probabilistic, 
and the second moves a fraction of non-zero sites. More precisely, the parameter m 
that measures the degree of mixing is defined as follows. A site whose value is one is 
selected at random and swapped with another site value (either zero or one) selected 
at random. This operation is repeated mc(m, t ) N  times, where N is the total num- 
ber of sites and c(m, t )  the density of non-zero sites at time t .  It is important to 
note that this process does not change the value of c( m, 1). With this definition, the 
number of effective moves of non-zero sites is mc( m,  t )  (1 - c( m, t ) )  N. 

In some cases, it might be of interest to define the range of the move, i.e., the 
maximum distance between the sites whose values are swapped. The greater the 
range, the more effective the mixing process. 

When m is large, all the correlations created by the cellular-automaton rule are 
destroyed, and the evolution of the density of non-zero sites is correctly predicted by 
a mean-field type approximation. This approximation is often far from being correct 
(Bidaux et a1 1989, Chat6 and Manneville 1991, 1992). In this letter, we study some 
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one-dimensional cellular automata whose densily of non-zero sites c(0 ,  t) tends, for 
m = 0, to a fixed point c(0 ,oo)  as 1 tends to 03, whereas their mean-field maps are 
chaotic. Therefore, valying the control parameter m, which route to chaos is going 
to follow the stationary value of the density of non-zero sites? 

We restrict our study to ‘game of life’-type totalistic cellular-automaton rules. 
The state at time t of a onedimensional cellular automaton being represented by a 
function i c s ( t ,  i) from the set of integers iZ to the set of states { O ,  l}, the equation 

s ( t  + 1 , i )  = f(s(t,i- r )  + s(t,i- r +  1) + ... + s ( t , i +  r ) )  

where f is a map from {O, 1,. . . ,2r + 1) to { O ,  l}, determines the evolution of a 
deterministic range-r totalistic cellular automaton. 

f is such that 

if s,,, < 2 6 %ax 

otherwise. f(x)= {; 
If a neighbourhood is too poorly populated or too crowded, the central site ‘dies’, 

otherwise it ‘survives’. 
S,,,,,, S,, and T are chosen to obtain a chaotic mean-field map (i.e. r should 

be larger than 1, S,,, not too large and S,,, not too small). In order to have 
well defined global variables, l i e  c(O,03), the automaton rule should be of class 111 
in the sense of Wolfram (1983). Many rules with r ranging from 2 to 7 have been 
investigated and the same qualitative features have been obtained. ppical bifurcation 
diagrams for two range-3 rules are given in figures 1 and 2. The simulations have 
been done on a chain of N = lo6 sites with periodic boundary conditions. Figure 1 
represents the bifurcation diagram oi c(m,03) for r = 3, Smtn = 2 ana amax = 6 
(rule 124 according to Wolfram’s notation) and figure 2(a) the bifurcation diagram 
for T = 3, S,,, = 1 and S,, = 6 (rule 126). The route to chaos followed by 
e( m, 03) is the familiar cascade of period-doubling bifurcations. 

- . I  

1 0 1 ,  I 1  I , ,  I I ,  I 

- 

2,0 value c(m,co) of the density of non-zem sites for 
range-3 tolalistic rule 124. 

0.0 0.5 1.0 1.5 
0 0 k~1-1-1 I I I I , , L-,_[_L, , ,. 1 Figure 1. Bifurcation diagram for the slationary 

value c(m,co) of the density of non-zem sites for 
range-3 tolalistic rule 124. 

0 0  0 5  1 0  

The main difference in these diagrams occurs at low m. ae(m,oo)/am is finite 
at the origin for rule 124 (figure 1) whereas this derivative is infinite for rule 126 
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Figure 2. Bifurcation diagram for the stationary value c(m,m) of the density of non- 
zero sites for range-3 totalistic rule 126. (0) Overall diagram with N = l o 6  sita.  (6) 
Blow-up of the bifurcation diagram with N = 16 x lo6 sita. B better see the period-16 
cycle, the points repment averages over Uve cycles. 

0.0 

m 

(figure 2(u)). The asymptotic behaviour for small m of ~ ( m ,  00) is related to the 
asymptotic behaviour of c(0,t) for large t (Boccara and Roger 1992). The first case 
is observed when c(0,t) tends exponentially to c(0, CO) while the second is a conse- 
quence of a power-law behaviour of c ( 0 , t ) .  This latter behaviour is characteristic of 
automata whose evolution toward their limit set may be viewed, after a short tran- 
sient, as an assembly of interacting defects in a regular background. As a result of 
the interactions the number of defects decreases as a power of time and, therefore, 
we have c(0,t)  - c(O,00) - t -7  (Boccara ef ul 1991), where 0 < y < 1. Rule 
126 is indeed a block transform (Boccara and Roger 1990) of range-1 totalistic rule 
6. Its limit set consists of sequences of zeros and ones whose lengths are multiples 
of 6. The distribution of the sequences of zeros is identical to the distribution of 
the sequences of ones, which implies that the asymptotic density of non-zero sites 
is +, and the average number of sequences of length 6n per site is 1/3 x 2"-. 
1111 L".,"C,jpa.- ." L . l C  111,111 JIll w ""LLL".C" L'L1Y"grn L l l 1  Clll l l l l l~l lY' l  Y I  "1LCL.W Un 

corresponding to sequences of zeros or ones whose lengths are n (mod 6). These 
defects combine according to the simple law: d, + d, - d,  with m + n = q 
(mod 6), they experience a diffusive motion and their number decreases as t-'I2. 

We shall now focus our attention on this second rule. Since the mean-field 
approximation reads 

Tho ml.rnmnnm tn +La I:-:+ :r ~ h . + n : - ~ A  +Lm..nL +ha nl:-:m-+:nn n# rln<anr^ 2 

c( t+l)  = 1-c(t)7-(1-c(t))7 = 7c(t)(l-c(t))( 1-2c( t )+3c( t )2-2c( t )S+c( t )4)  

its mean field map has a quadratic maximum. The universality class corresponding 
to such a map has been studied extensively (Fegenbaum 1978, Berg6 et ul 1984) and 
it is interesting to investigate more carefully the bifurcation diagram represented in 
figurc 2(u). lb obtain a higher precision on the location of the first bifurcations, part 
of this diagram has been investigated with a chain of a larger length (N = 16 x lo6) 
and smaller steps in m. We have also performed averages over five cycles to better 
see the period-16 cycle. The results are represented in figure 2(b). The first four 
bifurcations (figures 2) are located at m, = 0.340 f 0.005, m2 = 0.655 f 0.005, 
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m3 = 0,780 f 0.001, and m4 = 0.813 f 0.001. Due to the fact that the size. of 
the one-dimensional lattice. is finite, the full sequence of perioddoubling bifurcations 
cannot he observed. The Feigenbaum constant 6 (Feigenbaum 1978) is the limit as n 

the first four bifurcation points, we have SI = 2.5 and 6, = 3.8 wlthin 10%. 6 may 
also be estimated from the inverse cascade. We have found = 1.095 f 0.005, 
?E, = 0.859 f 0.001 , and ?ii3 = 0.827 f 0.001, which gives 6, = 7.4 within 10%. 
These results are similar to those obtained from the iterations of a unimodal map, 
and if we could have observed more bifurcations, 6, would have probably have come 
closer to the universal value 4.67. 

In a periodic attractor, the order in which its constituent points are visited is 
important. With the usual notation (Berg6 et a1 1984), we obtain for period four the 
sequence of points 2-0-3-1, for period eight: 2-6-0-4-3-7-5-1, for period sixteen: 2-10- 
14-6-80-12-4-3-11-15-7-5-13-9-1, in agreement with the universal sequences (Berg6 er 
nl 1984). 

At first sight, our result might appear rather surprising. Why this route to chaos? 
Since. the existence. of a map in this context is not evident, why should we observe 
the universal behaviour corresponding to maps with a quadratic maximum? 

goes to M of the sequence. (6,,), where 6, = (WZ,,+~ - m,)/(m,+? - m , + J  From 

00 D 2  0 4  08 0 8  10 
c(m,t) 

F y l n 3 .  (c ( t+l ) ,e ( t ) )  plot for different values o f t  and m (rule 126). (a) 'WO cypial 
fila with m = 0.85 (-) and m = 1.40 (squares). The upper curve represents the 
mean-field map. The inset s h o w  the variations, as a function of m, of the coefficients 
of the polynomial 

f(r)=7z(l-z)[ao(m)-Za~(m)l:+3al(m)rz-2a3(m)z3+a~(m)r'] 

ao(m): (+), ni(m): (o), az(m): (X), aa(m): (O) ,  or(m): (x ) .  (b) Influence of 
the number of sites N for a typical fit (m = 0.80)  in a period Z3 regime. The two 
upper curva represent the mean-field map and the polynomial 61 for N = 1 6 X  10'. The 
inset s h m  a blow-up of the central part with N = lo5, N = 10' and N = 16 x 10'. 

It is interesting to plot in the periodic and in the chaotic regime c(m,  1 + 1) as 
a function of c(m, t) for given values of m. Figure 3(n) represents typical plots with 
m = 0.85 (crosses) and rn = 1.40 (open squares) for a 106-site chain. For each 
value of m we used a least-squares approximation to determine a polynomial of the 
form f,,,(z) = 7+(1 - %)P,,,(z). The degree of the polynomial P,,,(z) is chosen in 

- 
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the following way: successive approximations with increasing degree are determined, 
and we stop when increasing the degree does not improve the root mean square 
residual a. We have found that degree equal to 4 for P(z) was most relevant in 
the range 0.75 < m < 1.7 which has been investigated (a decreases by a factor of 
order 3 from degree 3 to 4 and is practically constant beyond degree 4). Since f( z) 
has the same degree as the mean field map it is interesting to write 

P(3:j = ao(mj - 2a,(mjz + 3 a 2 ( m j 2  - 2 a 3 ( m j 2  + a4(mjz4. 

The mean field map is recovered for a, = a, = az = a3 = aq = 1. In this 
whole range, a is roughiy constant and quite small which seems to indicate 
the existence of a map f,,,(z) for every m. The inset shows the variations of the 
coefficients of P ( z )  as a function of m. Within the accuracy of our fit, those 
coeiiicients satisfy the reiaiion: Q~ = a3 = 3a, - Za,, which corresponds to the 
symmetry of the map with respect to the vertical axis 3: = f. The evolution of the 
map as a function of m is far from a simple scaling of the mean-field map with a factor 
X(m). While a o ( m )  is roughly constant, the coefficients of higher degree increase 
drastically when m decreases. Some points at m = 0.95, m = 1.05, m = 1.23, 
m = 1.43 are clearly out of the error bars. The first and last values of m correspond 
,U n a n 1 u 1 1  W"LUU"U U, p.,uu.c, ,y,  L"aL-.a'LL."Up ."lU1y " Y L V l b  a, L1.W ura.*-a i i  

be seen in figure 2(b). The first one has period six with a sequence (according to 
the previous notation) 2-0-4-3-5-1, in agreement with the universal behaviour for the 
first window of period six (Berg6 e! a1 1984). The last one has period five: 2-0-3-4-1. 
Further simulations with a larger number of sites and smaller steps in m are necessary 
to identify other narrower windows. 

An i m p g n !  qu_&on a ~ w  k; does !he mot mega square residua_! n vankh as 
the number of sites N goes to infinity or is there some intrinsic noise as far as we 
have not reached the mean field limit? In the latter case, only a truncated sequence 
of bifurcations could be observed even in the limit N -+ 03 (Crutchfield ef a1 1981, 
Shraiman ef a1 1981). Figure 3(b) represents the polynomial fit corresponding to 
m = 0.80 (period 'Z3 regime) for different values of N .  The upper curve shows the 
alobal fit with N = 16 x lo6. The inset represents a blow-up of the central part 
For various N .  The mean square root residual U of the polynomial fit is respectively 
2 x for N = lo5,  N = lo6  and N = 16 x lo6. We 
do not know whether this small decrease of a is significant, but it is really much 
slower than l / f i .  In contrast, the spreading of the points along the map decreases 
roughiy as 1/f l  to converge towards a sequence of eight points. 

Although it is difficult to conclude definitively, the small decrease of U as N 
increases from l o 5  to 1.6 x lo', and the fact that when N is fixed, U does not 
decrease significantly when we approach the mean-field limit seems to indicate the 
existence of a map without noise as N - 00. 

We have restricted our study to one-dimensional systems. The same behaviour 
is expected in two dimensions for similar class-3 'game of life'-type automata. The 
results shown here are quite general and could be useful in modelling a variety of 
biological systems where the motion of individuals is important. 

Recently Chat6 and Manneville (1991,1992) and Gallas ef a1 (1991) have observed 
collective behaviours in a class of four- and five-dimensional cellular automata. De- 
spite the rather high space dimensionality of these automata, their stationary densities 
of non-zero sites do not behave as predicted by the corresponding mean-field maps 

*,. __-,.... ... :"Â ..". -< ..,..&.A:,.:&. .L̂. ^ItL^.."L L..-.dl.. .;̂ :LÎ  "I tL:" " .̂.la 

and 0.75 x 
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as in Bidaux el al (1989). These automata exhibit, however, unexpected periodic or 
quasiperiodic behaviours, showing that class-3 cellular automata may have a more 
diverse behaviour than suggested by Wolfram (1983). 

We are indebted to P Manneville and H Chat6 for many useful suggestions and 
exciting discussions. 
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